Bayesian Optimisation with Prior Reuse for Motion Planning in Robot Soccer


Abstract

We integrate learning and motion planning for soccer playing differential drive robots using Bayesian optimisation. Trajectories generated using end-slope cubic Bezier splines are first optimised globally through Bayesian optimisation for a set of candidate points with obstacles. The optimised trajectories along with robot and obstacle positions and velocities are stored in a database. The closest planning situation is identified from the database using k-Nearest Neighbour approach. It is further optimised online through reuse of prior information from previously optimised trajectory. Our approach reduces computation time of trajectory optimisation considerably. Velocity profiling generates velocities consistent with robot kinodynamoic constraints, and avoids collision and slipping. Extensive testing is done on developed simulator, as well as on physical differential drive robots. Our method shows marked improvements in mitigating tracking error, and reducing traversal and computational time over competing techniques under the constraints of performing tasks in real time.


KgpKubs Team Description Paper, Robocup SSL 2018


Abstract

This paper describes the mechanical, electronic and software designs developed by Kharagpur RoboSoccer Students’ Group (KRSSG) team to compete in RoboCup 2018. All designs are in agreement with the rules and regulations of Small Size League 2018. Software Architecture implemented over Robot Operating System(ROS), trajectory planning and velocity profiling, dribbler/kicker design and embedded circuits over the last year have been listed.


KgpKubs Team Description Paper, Robocup SSL 2017


Abstract

This paper describes the mechanical, electronic and software designs developed by Kharagpur RoboSoccer Students’ Group (KRSSG) team to compete in RoboCup 2017. All designs are in agreement with the rules and regulations of Small Size League 2017. Software Architecture implemented over Robot Operating System(ROS), trajectory planning and velocity profiling, dribbler/kicker design and embedded circuits over the last year have been listed.